当我们积累了新的体会时,应该马上记录下来,写一篇心得体会,这样我们就可以提高对思维的训练。那么好的心得体会都具备一些什么特点呢?以下是小编精心整理的统计学学习心得体会,希望对大家有所帮助。
统计学学习心得体会1《经济统计学》是一门比较灵活的课程,我觉得也是学的有滋有味的一门课。通过这一个学期的《经济统计学》知识学习,在授课老师的讲授和指导下获益良多。老师喜欢和我们同学一起互动,不象有的老师只是填鸭式教学,而不管学生吸收了没有。《经济统计学》不好懂是众所周知的,老师在上课时列举了很多生动鲜活的例子让我们更容易理解。老师还会给我们留出提问的时间,解答疑难问题,更难得是在课后的时间里对我们同学提出的问题作了详细的解答。
我将有关《经济统计学》的知识在实际工作中加以应用,取得了很好的效果,也加深了自己对《经济统计学》这门课程的理解和掌握。
以前,我常常不知道那些客户的有关具体信息和购买习惯,在学习了统计学这门课程后,我对自己的客户资料进行的整理并对他们的购买记录做了统计分析和研究。这样,我就可以提前知道客户特别是重点客户的产品需求与服务需要以及自己的发展重点。我还在运用统计分析的结果后获得了客户的好感与信任,也获得了新的客户和新的订单。
例如,我们之前有一家公司客户往年只是订购一次我们的产品。在做了统计分析后,发现这家公司规模不断变大,新产品的需要不断增加,是值得开拓的潜在客户,于是我为该客户制定了一套全新的符合他们未来一年产品需求的企划书,并运用统计分析的知识对他们未来的产品需求用图表进行分析和商谈。结果客户很满意我的提案,一下子就跟我签订了连续3年的供货协议,并且称赞我的分析有水平。我的心甭提多高兴,感谢老师的教导,不但学到了《经济统计学》的理论知识,还在工作中派上了用场,这一段时间的学习真值。
统计学学习心得体会2经过这一个学期对统计学的学习,深刻地了解到统计学和我们的生活息息相关,我们每一天都会遇到大量的统计问题,无论是走在大街上还是坐在电脑前我们都会接触到大量新闻和大众媒体在统计数字上的表现,如最近炒的很热的加多宝,它的广告语是:全国每卖出十罐凉茶,有七罐是加多宝。我们且不理会这句话的真假,我们单从这句话来看很明显的就是极大地运用了统计数字来表现其产品的销量大。还有我们去菜市场买菜的话,也会粗略地对一个菜的价格进行一个统计,就是会走几个菜摊子,对同一个菜的价格进行询问,然后对这些价格进行比较,最后得到一个比较平均的价格,进而在自己认为比较合理的价格范围进行采购。可见统计学与我们的生活已经是密不可分的了。
在学习统计学的教学过程中,很多例子也是我们生活中常见的例子,比如说学生的身高,体重等等,我们在学习中学习分析这些从生活中得来的数据,并经过统计得出合理的结论。这对于我们学生来说就大大提高了我们学习的兴趣,对于老师老说更是提高了课堂的效率。为了得出结论我们经历了收集数据,整理数据、描述数据和分析数据这些过程,并能利用结论进行合理预测和判断,这就培育了我们用数学的眼光来看待生活,用数学的思维思考生活,可以说这也是一种对于理智的培养,统计学的思维、原则和方法都可以帮助我们自己走出思维误区,更重要的是,还可以让我们识破充斥于广告、网络、媒体报道和专家言论中的误导甚至谎言,尽可能避免被他人忽悠。老师推荐我们看过一本书叫《统计数学会说谎》,这里面就有一个有趣的例子:用平均数来掩盖异常值。一个富翁走入一家坐满了穷人的酒吧,酒吧里人均收入将迅速提升,但每个穷人并没有因此致富。这就是最典型的平均数算法,掩盖了贫富悬殊被拉大到危险地步的事实。除了《统计数学会说谎》这本书里的这个例子,其实我们生活中还有很多这样的例子,如:在报纸上我们经常看到,劳动者平均工资相比过去有了大幅度增长,但却只强调了这个平均工资的增长,却对通货膨胀和加班这些因素只字不提。我们如果在学习中培养了统计学的思维原则和方法,相信我们能看到很多除了数字以外的其他的东西,从而认清事物的本质。
学习统计学,我们不仅要学习统计学中的这种思维,我们还应该掌握统计学中的各种软件的应用,如:EXCEL、SPSS。因为统计的很多分析都要靠软件来完成,特别是在当今迎来的大数据时代,只有掌握统计学工具,才能做到分析和利用数据。能否应用统计学及时从海量数据中发现潜在需求,是企业能否准确把握创新机遇而赢得竞争的关键。例如我们统计书上209页10。1的这道练习题:一家电器公司的管理人员认为,每个月的销售额是广告费用的函数,并想通过广告费用对销售额做出估计。下面是相关数据:
现在我们来看一下这道题的第(2)问:用月销售额作因变量,电视广告费用和报纸广告费用作自变量,建立估计的回归方程,并说明回归系数的意义。从这道题上我们可以知道,我们用肉眼看表格上的数据,不借助软件进行计算,我们是很难得到方程的回归系数的,更别说说明意义了。这时我们就要借助SPSS或者EXCEL这些软件对表格上的数据进行分析,而且很快得出结论:
这时我们就可以得出得到这个回归方程:y=83。230+2。290x1+1。301x2。而且我们可以很快说出回归系数的意义:电视广告费用增加1万元,月销售额将增加2。29万元,报纸广告费用增加1万元,月销售额增加1。301万元。这就说明了广告的效果明显比报纸的效果要好得多,从而可以调整广告费用和报纸费用的比例,为企业赢得更高的销售额。这个例子就充分说明了掌握数据分析软件的重要性了:
有效的分析数据是提高工作以及发展效率的关键。
所以学习统计学绝对是让人受益匪浅的,对于我们现在的大学生而言掌握统计学的基本理论和方法,能熟练地运用常用的统计软件分析数据,有助于我们利用手中的数据对负责的问题做出明智合理的决策,对以后我们走出校园,走向社会,或者进入企事业单位和经济管理部门从事统计调查,信息管理,数据分析等工作都是大有益处的。所以,在这里感谢老师这个学期以来对我们在统计学上的教导,以及和我们分享的一些书籍。
统计学学习心得体会3在学习统计学之前,谈起统计我脑袋中就浮现出计数,一大堆枯燥的数字,还有一长串的数学计算式。在我眼中,统计学是一门非常枯燥非常单调的学科,它不像数学那样强调严密的推理和逻辑,而是仅仅需要搜集原始资料,套用数学公式而已,我甚至不是很喜欢这门课程。但是经过一个学期的学习,我对统计学有了全新的认识。我开始意识到统计学在学术研究中,在公司决策中,在国家制定方针政策时??在社会生活的各个方面都发挥着重要作用,我开始了解到统计学是一个理论联系实际的学科,非常具有实践性,统计的原始资料全部来源于实际生活。统计学也是一种成熟的学科,它有它独立而完备的理论体系,它是相当科学的,它是以数学作为它的基本工具,但它有比数学更有实际用途,它可以对生活中大量的无序的数据进行分析,找出它们的规律, ……此处隐藏6735个字……它是用来干什么的?中位数和平均数的缺陷是什么?为什么会出现四分位点和箱图?为什么会这么做是我在课上感受最深也是受益最多的地方。
如今学完统计,我自认为能够很清楚的为了某项目的去做调查问卷,基于数据做出合理的处理和分析,然后多样化的表达出来,从而验证我的目的。因为我知道该在什么条件下去做什么分析,有什么缺陷需要做什么去补全。所以,感谢老师给了我一个完整的统计体系,即使以后觉得知识不够用时,我仍能够在当前体系继续完善它。
另外,我养成了看课件,看书先看目录和重点的习惯,以前在这方面做得不是很到位,总是觉得自己足够聪明,什么东西都是直接拿来看,看到好的便觉得不错,也不管整个体系是什么样子的。如今深刻觉得先把知识体系建好的好处,站在全局的角度看问题非常全面,好像在飞机上观察一个城市一般。这也是以前上课所欠缺的,我感觉以前的课程老师也很少注重这方面,总是说今天讲什么,没有前文,也没有后果。
以上两点我觉得比我收获整个统计体系的知识更重要,这是对我学习方法的进一步完善。之后将总结一下我在统计课上学到的知识。
首先是收集数据:其主要的方法就是调查问卷和从网上的数据库中去获得。这两种方式在前两次大作业中我们都尝试过了。现在网络很发达,调查问卷也可以直接发放到网上,也可以很方便的做分层和整群抽样调查。当时做调查问卷感悟最大的是怎样去让问题更有吸引力,我们对有个小组由于做了关于我是歌手这个非常火的题目,所以收到300多份问卷,而我们做的是有关考研班的调查问卷,所以收到的问卷才40多份。当数据收集到之后,一般来讲是做描述性统计,这是一种简单而又直白的,但却富
有表现力的展现方式。可以直接观察到各组之间的优劣和占总体的大小。当时我们组做得大作业是有关全世界各国GDP的。条形图能够反应各国之间的差异,我们很明显能够看到美国的GDP大概是中国的两倍。而通过饼图,最直观的感受是美国GDP占全世界的四分之一,这是个体与总体的比较。
频率表
定性分析条形图
饼图
描述性统计直方图
频率表
定量分析
Ogive
数值特征位置特征离散特征
形态特征
描述性统计下分为定性和定量,所用方法不是很一致,在定量的学习中,我们依次理解了平均数,中位数,四分位数,箱图,方差,标准差,变异系数,偏倚程度。这是一个渐进的过程,平均数对于偏态比较敏感,易受极值的影响,所以我们引用了中位数,相对而言受极值的影响较小。
而平均数和中位数都是一个确切的点,不能表示范围,所以我们有了四分位数,进而再表示为图形就是箱图。但是以上只能表现数据的位置特征,有些时候我们更关系数据的波动和密集程度,比如打靶的成绩。所以就有了方差和标准差,都是表示数据对于平均数的波动程度。对于身高和体重来讲,由于平均数的不同,所以对于不同数据,比如身高和体重,由于基数不一样,方差不一定越大越好,于是又有了变异系数,这样不用的数据也可以比较波动程度。通过位置特征和离散特征,我们就能够将数据的形态特征表现出来。
描述性统计是对单个变量内部特征的处理,从而得到关于单个变量的特性。描述性统计是剩下部分的基础,也就是假设检验和方差分析,或者说研究多变量的基础。
研究多个变量,首先,也是最重要的是验证变量是否符合正态分布。正态和非正态,意味着之后选取的方法将截然不同。正态将会以平均数作为核心,比如ANOVA,LSD等,
非正态则会以秩或者中位数作为核心,主要以sign检验,秩和检验,平均秩检验等非参检验。
方差分析也是一个渐进的的过程。ANOVA是只研究在一个因子下多方案的差异性,LSD就可以研究多个方案两两之间的差异性。之后就是在多个因子下,Block是研究多个无相互作用因子下方案的差异性,factorialexperiment则是能够再在有相互作用下的因子下研究一个因子对于多个方案的差异性。
非参检验也是从最简单的中位数开始,从单变量开始拓展。秩和检验解决了多个方
案,并不配对的问题,比符号秩更具有普适性,但是精确度不如符号秩。K-W则是通过比较各样本和总体平均秩来判定多个方案是否存在差异性。
剩下的就只有相关性分析了,正态的时候用persion,非正态则用spearman,两者之间原理是一样的,只不过一个是用平均值,另一个使用中位数。我们在做军事建模的时候就选用了spearman。
统计学学习心得体会(2)
花几天时间,整体复习了一遍统计学,准确的来说是从第一页开始较为仔细的阅读了一遍《统计学》这本教科书。随后统计为我打开了另一扇窗,让我得以从不同的视角重新思考这门让我痛苦了一个学期的课程。至此统计学不再仅仅是一些无数抽象公式的代名词,而是一门理论联系实际,工作活动中不可或缺的一门重要科学。
《总论》和《统计数据》的内容比较简单,引出概念,复习以往学习过的知识。就在我们放松警惕,大呼统计学一点也不难的时候,《抽样估计》彻底震住了自鸣得意的我们。
理论上来说《假设检验与方差分析》的内容要难于《抽样估计》。但是个人觉得《抽样估计》的行文并不像《假设检验》那么好理解。《统计学》这本书喜欢先向学生介绍很多概念和公式,再将公式引用到例子中来解决问题。然而在介绍公式的同时,学生往往不了解这些公式真正的意义和使用方法,单纯的死记硬背效率颇低。拿《抽样估计》来说,计算抽样平均误差的公式之多,方法之众,让同学们的脑袋混沌了好久。大家私下交流,混沌的原因在于不知道这些公式的来龙去脉,只将条件带入相应的公式计算答案的方法是以前没有经历过的,需要一段时间的适应过程。
《假设检验与方差分析》开篇给同学举了两个例子来阐明假设检验的基本思想。个人认为,这两个例子是点睛之笔。在学习的开头就让学生了解到第五章的基本内容,以及假设检验在实际应用中的意义。就像写小说先抛出一个悬念吸引读者读下去。阅读两个例子后我会不禁思考,如果实际中遇到类似的问题,有什么方法可以避免犯“弃真”或者“采伪”的错误。带着疑问去学习,才是真正的自主学习的过程。
《相关与回归分析》同样吸引人。因为之前我片面的认为相关关系没有确切的规律可循,更不容说计算出事物的内在联系了。然而科学证明,不但相关系数可以计算出来,回归方程也可以用来做分析预测。我想起了一句话:任何学科脱离了统计都将不是科学。只有统计能仅凭现象就能分析归纳出事务的内在联系,给我们呈现出一个更明朗的世界。
《时间序列分析》在我看来是和我的专业---国贸联系最紧密的学科。运用所学到的知识可以分析出公司销售额的各种增长情况,公司的销售额有什么样的季节变化规律,还能建立一个模型对未来的财务情况做出预测。
《统计指数与综合评价》中“综合法指数”的计算用到了《微积分》的相应知识。在《微积分》中不知所云的内容却可以通过统计学的学习恍然谈大悟。多亏了老师深入浅出的讲解,让我在短短一个学期里既巩固了旧知识又学到了许多有用的新知识。