八年级上册数学教学计划

时间:2024-04-11 20:15:16
八年级上册数学教学计划

日子如同白驹过隙,不经意间,又将迎来新的工作,新的挑战,此时此刻需要制定一个详细的计划了。想学习拟定计划却不知道该请教谁?下面是小编为大家收集的八年级上册数学教学计划,仅供参考,大家一起来看看吧。

八年级上册数学教学计划1  一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有少数学生不上进,基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

第十一章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章 实数。从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。

第十四章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景,使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程,为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

五、教学进度

周教学内容及课时安排

2 2三角形全等的条件(2) 3角平分线的性质(1)

3 4 第十一章小结(3)

8 平方根3 立方根3

9 实数3 第十三章小结(2)

10 段考 变量与函数3

11 一次函数3 方程与不等式5 课题学习3

15.2.4整式的乘法(2)

18 第十五章小结(3) 总复习

19 总复习

20 考试

本计划只供本人使用,在实施中应根据实际进行适当调整

八年级上册数学教学计划2

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理 ……此处隐藏20264个字……满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.

基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解.

四、教学过程设计

(一)引言

前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.

问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?

两个直角三角形满足的条件

全等依据

方法1

两条直角边分别相等

“SAS”

方法2

一个锐角和一条直角边分别相等

“ASA”或“AAS”

方法3

一个锐角和斜边分别相等

“AAS”

追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?

师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.

【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.

(二)探索新知

问题2:探究5

任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?

画法:

(1)画∠MC′N=90°;

(2)在射线C′M上截取B′C′=BC;

(3)以点B′为圆心,AB为半径画弧,交C′N于点A′;

(4)连接A′B′.

追问:作图的结果反映了什么规律?

你能用文字语言和符号语言概括吗?

文字语言: 斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)

五、小结反思

教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:

1.这节课我们学习了哪个判定直角三角形全等的方法?

2.判定两个直角三角形全等总共有哪些方法?

师生活动:教师引导,学生小结.

【设计意图】回顾两个直角三角形全等的几种判定方法,形成知识体系.

六、布置作业:

教科书习题12.2第7、8题.

八年级上册数学教学计划15

一、学术条件分析

八年级是初中学习过程中的关键时期,起着承上启下的作用。下学期尤为重要,因为学生的基础会直接影响到以后能否上学。通过上学期的学习,学生的计算能力、阅读理解能力和实践探究能力得到了发展和培养。他们对图形及其数量关系有了初步的认识,逻辑思维和逻辑推理能力得到了发展和培养。通过教育教学,大多数学生可以认真对待每一项作业,及时纠正作业中的错误。他们可以在课堂上集中精力学习和思考,学习兴趣得到了激发和进一步发展。本学期将继续促进学生的自主学习,让学生参与活动,探索发现,用自己的经历获得知识和技能;努力实现基础与现代性的统一,提高学生的创新精神和实践能力;进一步激发学生对数学的兴趣和爱好,通过各种教学方法帮助学生理解概念、操作运算、拓展思维。为了在这一时期取得理想的效果,教师和学生都应该努力检查和弥补差距,充分发挥学生作为学习的主体和教师作为教学的主体,注重方法和能力的培养。关注学困生和女生。

二、教材分析

本学期的教学内容由五章组成,包括知识的联系、教学目标、重点和难点分析如下:

第十六章二次部首

本章的主要内容是二次根式的概念、性质、简化和计算。本章重点了解二次根式的性质、简化和计算。本章的难点是正确理解二次根式的性质和算法。

第十七章勾股定理

直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角相辅相成,与30度相对的右边等于斜边的一半。本章研究的勾股定理也是直角三角形的一个性质,也是一个很重要的性质。本章分为两节。第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十八章平行四边形

四边形是人们日常生活中广泛使用的图形,特别是平行四边形、矩形、菱形、正方形等特殊的四边形。因此,四边形不仅是几何学中的基本图形,也是“空间与图形”领域的主要研究对象之一。这一章是基于学生前一期所学的四边形知识,以及这一期所学的多边形、平行线、三角形的相关知识。也可以说是在现有知识的基础上做进一步的系统整理和研究。本章的学习也是反复运用平行线和三角形的知识。从这个角度来说,本章的内容也是对前面平行线和三角形的应用和深化。

第十九章线性函数

一阶函数通过对变量的考察,可以了解函数的概念,进一步研究最简单的函数之一,——一阶函数。了解函数的相关性质和研究方法,初步形成从函数的角度认识现实世界的意识和能力。在教材中,通过体现“问题情境——”——建立数学模型——的概念、规律、应用和拓展模式,学生可以从实际问题情境中抽象出函数和初等函数的概念,探索初等函数及其图像的性质,最终利用初等函数及其图像解决相关的实际问题;同时,在教学顺序上,将比例函数纳入线性函数的学习。文本框

本章主要研究均值、中位数、众数、极差、方差等统计量的统计意义。并学习如何使用这些统计数据来分析数据的集中趋势和分散程度。通过研究如何利用样本的均值和方差来估计总体的均值和方差,可以进一步理解用样本估计总体的思想。

大家都在关注苏联档案解密:朝鲜战争欺骗了历史

20xx年人民教育版八年级数学教案和教学进度

三、提高学科教育质量的主要措施:

1、努力搞好教学八项。重视教学八项作为提高成绩的主要方法,认真学习新课程标准和新教材,根据新课程标准拓展教材内容;认真听课,批改作业,给予指导,做试卷,也能帮助学生学会努力学习。

2.爱因斯坦说,对它感兴趣的老师。激发学生兴趣,向学生介绍数学家和数学史,介绍相应的有趣的数学题,给出课外数学思维题,激发学生兴趣。

3.引导学生积极参与知识建设,营造民主、和谐、平等、自主、探究、合作、交流、共享的高效学习课堂,让学生体验学习的乐趣,享受学习的乐趣。引导学生写小论文,复习提纲,让知识来源于学生的结构。

4.引导学生主动总结解题规律,引导学生一题多解,统一多解,培养学生透过现象看本质,提高举一反三的能力,是提高学生素质的根本途径之一。

5.用新课标的理念来指导教学,积极更新你头脑中固有的教育理念。不同的教育理念会带来不同的教育效果。

6.探究性问题的研究、课后调查和操作实践将带动班级学生学习数学,同时发展他们的专业。

7.进行分层教学,将作业安排在A、B、c三类,分层安排适合差、中、好学生,课堂提问照顾好,中、差

《八年级上册数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档